

Why 3rd generation

- Naturalness requires (at least)
 relatively light stops and sbottom
- Without naturalness, SUSY loses lots of its appeal
- The LHC in 2011/2012 is knocking on the door of sensitivity to this crucial region of phase space
- This talk covers current CMS searches for stops and sbottoms and some ideas for the future

What 3rd gen SUSY looks like

- Experimentally, the only option is to search for final state topologies
 - Doesn't matter what model you think of, you'll measure what you measure
 - Many signatures can capture multiple plausible models
 - Other models may require dedicated searches
- Main unifying string is presence of b jets, which show up eventually in stop and sbottom decays and help reject backgrounds
- General SUSY features of large hadronic activity and missing energy still apply, though so do all of the caveats that come with those assumptions

Talk organization

- Consider direct stop and sbottom pair production, but also gluino pair production with decays to stop and sbottom
 - Need a light-ish gluino, too
- Here, I've organized the CMS searches by the number of leptons in the final states moving from 0 to 1 to 2
 - Brand new results today for OL and 1L!

Classic hadronic search: jets+MET+b

SUS-11-006

- Hadronic activity
 - ≥ 3 jets with p_T > 50 GeV
 - $T = \sum_{\text{jets}} |p_T|$ > 350 GeV
- Missing energy:MET > 200 GeV

- \Box b jets: \geq 1 tagged jet
 - Reduce all but top backgrounds
- $\hfill\Box$ Veto events with an isolated μ^- or e $^-$
 - Reduce top, W and Z backgrounds
- $\hfill \square$ Minimum azimuthal separation between MET and jets ($\mbox{min}(\Delta \varphi_{\mbox{\scriptsize N}})$)
 - Reduce mismeasured multi-jet backgrounds

Jets + MET + b: backgrounds

- Remaining backgrounds are dominated by tt events
 - Real MET from W decays, plus real b jets from top decays
 - $\square \geq 2$ b tag region almost all tt
- □ Smaller contributions from multi-jet QCD, W+jets, $Z \rightarrow vv$ +jets, and single top
 - Real MET from W, Z decays, or real b jets from top decays
- Data-based measurements of three main backgrounds
 - tt+W+t combined (next slides)
 - \blacksquare QCD: unique approach with resolution-normalized $\Delta \varphi (\text{jet,MET})$ to decorrelate it from MET
 - \square Z \rightarrow vv: scaled from Z \rightarrow l⁺l⁻ yields

Jets + MET + b: tt+W+t background (I)

- Use single lepton control sample to measure the shape of the MET distribution with all other selection cuts applied
 - Simulation shows MET shape agrees between 0/1 lepton samples

- Normalized 1L MET shape in OL low MET sideband to predict signal region background
 - Subtract non-tt+W+t contributions based on data-driven estimates

Jets + MET + b: tt+W+t background (II)

- Employ alternative tt+W+t background method based on reweighting single µ control sample MET distribution
- Divide tt+W+t background into categories with 0/1/2 true e or μ
 - \blacksquare OL events from hadronic tau decays: use single μ control sample and simulate τ response
 - 1L events: Use known correlation between μ p_T and MET due to W polarization to predict MET shape
 - 2L events: Use dilepton control sample for normalization and MET shape from simulation

Jets + MET + b: results

- To increase sensitivity to different kinematics, 4 signal regions are considered
 - $\square \ge 1$ or 2 b tags
 - \square Loose = HT > 350, MET > 200
 - \blacksquare Tight = HT > 500, MET > 300
- Combined likelihood includes all sideband measurements and event counts to properly account for correlations and signal contamination
- No data excess in any search region

			-		
	Loose sea	rch region	Tight search region		
	$\geq 1 \mathrm{b}$	$\geq 2 b$	≥ 1 b	$\geq 2 b$	
QCD	9±1±9	$0.0 \pm 0.4^{+5.8}_{-0.0}$	$0.2 \pm 0.2^{+0.5}_{-0.2}$	$0.1 \pm 0.1^{+0.4}_{-0.1}$	
top and W+jets	$108\pm18\pm13$	$24\pm7\pm5$	$13\pm5\pm4$	$7\pm4\pm3$	
top and W+jets cross-check	_	_	$17.0 \pm 5.7 \pm 2.1$	$5.9 \pm 3.5 \pm 1.3$	
$Z \rightarrow \nu \overline{\nu}$	$24\pm11\pm4$	$2.6 \pm 2.9 \pm 2.0$	$5.0 \pm 1.6 \pm 2.0$	$0.2 \pm 0.4 \pm 0.5$	
Total SM	$141 \pm 21 \pm 16$	$25.8 \pm 7.4^{+7.8}_{-5.2}$	$18.2 \pm 5.3 \pm 4.5$	$7.3 \pm 4.0 \pm 4.3$	
Data	155	30	20	5	

Jets + MET + b: interpretation

- Since no signal, set limits on relevant models
- Prime model "T1bbbb"
- Use result from signal region with best expected sensitivity
 - Tighter kinematic selection does better with larger mass splittings
 - Looser kinematics compensated with tighter nB jet cut
- Gluino masses ~800 GeV excluded for LSP masses up to ~400 GeV in this model

M_{T2} with b jets

New!

SUS-12-002

- The M_{T2}-based analysis (described by Kenichi Hatakeyama on Wednesday) is also extended to include a b tagged jet
 - $Arr M_{T2}$ = "stransverse mass" = generalization of M_T to case of two similarly decaying particles with MET
 - For correct $m(\chi)$, end point of MT2 is parent particle mass
 - Divide multi-jet events into two "pseudojets"
 - Consider simplified case with massless pseudojets and $m(\chi) = 0$
 - Back-to-back jets, as from QCD events, peak at 0 (even with mismeasured p_T)
 - Parallel jets and large MET (characteristic of many SUSY events) have large M_{T2}

$$M_{T2}(m_{\chi}) = \min_{p_{T}^{\chi(1)} + p_{T}^{\chi(2)} = p_{T}^{miss}} \left[\max \left(m_{T}^{(1)}, m_{T}^{(2)} \right) \right]$$

$$(M_{T2})^2 = 2p_T^{vis(1)}p_T^{vis(2)}(1+cos\phi_{12})$$

SUSY-like topology at low ϕ_{12} \vec{P}_{T}^{miss} ϕ_{12} $\vec{p}_{T}^{vis,(1)}$

M_{T2}b: selection

- □ Require ≥ 1 high-purity b jet
 - □ ~42% efficiency
 - ~0.1% (6.3%) mistag rate for udsg(c) jets
- \square Require ≥ 4 jets
 - $p_T > 150/40/40/40 \text{ GeV}$
- □ HT > 750 GeV
- $M_{T2} > 125 \text{ GeV}$
- □ MET > 30 GeV
 - Computed from particle flow algorithm incorporating information from all subdetectors
- $\hfill\Box$ Veto events with isolated e \hfill or μ^-
- $\triangle \phi$ (jets, MET) > 0.3

Dominant background from top, with real b jets

M_{T2}b: background estimation

- Backgrounds for M_{T2}b measured in data with same techniques as M_{T2} inclusive
 - tt and W
 - Lost lepton method: count single lepton events in data and scale by probability to lose lepton measured in MC
 - Hadronic \(\tau\) method: measured in data and corrected by reconstruction and ID efficiency, observed to be consistent with MC
 - QCD
 - Naturally suppressed by M_{T2} cut
 - \blacksquare M_{T2} sideband used to fit for pass/fail ratio in $\Delta\,\varphi_{\text{min}}$ and extrapolate to signal region
 - Z→vv measured by counting W + jets events in data passing other selection criteria (except b tag) and scaling by ratio of W/Z production and W reconstruction efficiency

M_{T2}b: results

- \square Results split into 2 HT bins and 4 M_{T2} bins
 - Measure backgrounds and count data events separately in each
 - All data-driven backgrounds in good agreement with MC expectations
 - Unfortunately, also in good agreement with the data

	$Z \rightarrow \nu\nu$ Lost lepton		st lepton	$\tau \rightarrow had$	QCD		Total bkg.		Data	
M_{T2} bin	MC	data pred.	MC	data pred.	Estimate	MC \	data pred.	MC	data pred.	
$750 \le H_T \le 950$							_			
[125,150)	1.0	0.5 ± 0.4	12.8	4.5 ± 3.2	8.7 ± 6.3	5.16	4.1 ± 2.1	28.3	17.8 ± 7.3	22
[150,200)	2.0	0.7 ± 0.3	11.3	7.6 ± 3.6	8.0 ± 3.8	0.16	0.90 ± 0.51	22.1	17.2 ± 5.2	16
[200,300)	1.3	1.0 ± 0.5	6.1	1.3 ± 1.7	4.9 ± 6.7	0.0	0.04 ± 0.03	12.6	7.2 ± 6.9	16
≥ 300	0.5	0.6 ± 0.3	1.3	1.3 ± 0.9	1.8 ± 1.3	0.0	0.00 ± 0.00	3.7	3.7 ± 1.6	2
$H_T \ge 950$										
[125,150)	0.6	0.4 ± 0.3	6.2	5.9 ± 3.3	4.3 ± 2.4	1.25	5.4 ± 2.8	12.7	16.0 ± 4.9	10
[150,180)	0.4	0.9 ± 0.4	4.6	6.4 ± 3.3	3.2 ± 1.7	0.57	1.7 ± 0.9	9.0	12.2 ± 3.9	10
[180,260)	0.6	0.1 ± 0.1	4.2	3.4 ± 2.3	3.3 ± 2.3	0.67	0.45 ± 0.25	9.1	7.2 ± 3.2	9
≥ 260	0.6	0.7 ± 0.4	2.2	2.0 ± 1.6	1.6 ± 1.3	0.04	0.05 ± 0.04	4.6	4.3 ± 2.0	3

M_{T2}b: interpretation

- $\hfill\Box$ Simultaneous likelihood fit to all bins uses HT and M_{T2} shape to maximize signal and background discrimination
- Since no signal, extract upper limits on cross sections with CL_S
- CMSSM limits better with M_{T2} b looser M_{T2} cut at high squark/low gluino masses
 - Exclude squark mass up to ~1200 GeV
- Most sensitive here, too, to T1bbbb (gluino-mediated sbottom production)

 $lue{}$ Gluino masses excluded up to \sim 1 TeV for LSP up to \sim 400 GeV

Single lepton + b search

SUS-11-028

- Extend single lepton + jets search to include b tags
 - $\square \ge 4$ jets with $p_T > 40$ GeV
 - \square 1, 2 or \ge 3 b-tagged jets
 - \blacksquare Single isolated e/ μ with $p_T > 20$ GeV
 - Reject events with 2nd lepton
 - Avoid overlap with multi-lepton searches
 - Use looser isolation requirement and $p_T > 15 \text{ GeV}$
 - Signal region
 - HT > 650 GeV
 - MET significance, $Y = (MET / \sqrt{HT}) > 5.5$
 - □ Control region: HT>375, MET>60

Single lepton + b: b tagging

- Good data/MC agreement in number of b jets
- □ Top backgrounds dominate with≥ 2 b jets
- B jet p_T distribution also in good agreement with MC
- p_T spectra not very different
 between backgrounds (tt, W
 +jets single top) or benchmark
 signal points (LM3, 8, 13)

Single lepton + b: backgrounds

- All backgrounds measured together with inclusive data-driven approach
 - MET significance designed to remove correlation between HT and MET
 - If uncorrelated, can predict signal regionD with

$$\hat{N}_D = \kappa N_B \, \frac{N_C}{N_A}$$

- Kappa factors quantify effect of correlations and are measured in MC
 - $\kappa \sim 1.2$ for tt, ~ 1.3 for single top
- Uncertainty on K
 - Use 0b data sample to validate K factor, since it has already been excluded by other SUSY searches
 - Vary proportions of different backgrounds by $\pm 50\%$, stability vs HT and Y, JEC, JES, etc.

Single lepton + b: Results

- Same kinematic selection for each nB region
 - HT > 650 GeV, Y > 5.5
- Results consistent with background predictions
- Set limits with best expected ≥ N b-tag result

b-tags	Sample	N_D	ÑD		
0	ΣSM	$192.4 \pm 22.2 \pm 61.6$	$216.2 \pm 24.2 \pm 75.6$		
	Σ SM+LM3	$295.1 \pm 25.5 \pm 87.6$	$252.7 \pm 27.0 \pm 83.0$		
	Σ SM+LM8	$219.8 \pm 23.3 \pm 69.0$	$223.7 \pm 24.8 \pm 77.0$		
	ΣSM+LM13	$263.4 \pm 25.1 \pm 79.7$	$248.0 \pm 27.0 \pm 82.7$		
	Data	168	177.3 ± 13.7 ± 24.9		
1	ΣSM	$195.6 \pm 7.2 \pm 53.0$	$198.3 \pm 6.8 \pm 57.6$		
	Σ SM+LM3	$340.3 \pm 9.6 \pm 81.1$	$258.6 \pm 8.3 \pm 67.4$		
	Σ SM+LM8	$257.5 \pm 8.0 \pm 67.3$	$214.4 \pm 7.1 \pm 60.4$		
	ΣSM+LM13	$337.4 \pm 9.4 \pm 82.4$	$265.9 \pm 8.6 \pm 70.8$		
	Data	163	151.3 ± 11.7 ± 16.0		
2	ΣSM	$124.5 \pm 4.2 \pm 31.6$	$123.2 \pm 3.8 \pm 33.9$		
	Σ SM+LM3	$218.9 \pm 6.2 \pm 47.1$	$165.0 \pm 4.9 \pm 39.6$		
	Σ SM+LM8	$179.2 \pm 5.2 \pm 43.3$	$138.2 \pm 4.1 \pm 36.5$		
	Σ SM+LM13	$242.8 \pm 6.7 \pm 54.1$	$184.2 \pm 5.5 \pm 45.4$		
	Data	84	$\sqrt{103.4 \pm 9.6 \pm 10.9}$		
≥3	ΣSM	$24.6 \pm 1.1 \pm 6.7$	$24.8 \pm 1.1 \pm 7.4$		
	Σ SM+LM3	$67.1 \pm 3.4 \pm 13.2$	$48.0 \pm 2.6 \pm 11.1$		
	ΣSM+LM8	$58.9 \pm 2.9 \pm 13.7$	$35.5 \pm 1.7 \pm 9.3$		
	ΣSM+LM13	$68.1 \pm 3.2 \pm 14.1$	$59.0 \pm 3.3 \pm 14.2$		
	Data	17	$15.9 \pm 3.7 \pm 1.9$		
\≥\1	ΣSM	$344.7 \pm 8.4 \pm 90.7$	$346.9 \pm 7.8 \pm 98.0$		
	ΣSM+LM3	$626.4 \pm 11.9 \pm 139.7$	$470.2 \pm 10.0 \pm 115.4$		
	Σ SM+LM8	$495.7 \pm 10.0 \pm 124.0$	$388.7 \pm 8.4 \pm 105.1$		
	ΣSM+LM13	$648.3 \pm 12.0 \pm 149.5$	$505.6 \pm 10.7 \pm 127.6$		
	Data	264	$272.2 \pm 15.6 \pm 27.9$		

Single lepton + b: Interpretation

- Most sensitive to gluino-mediated stop production
 - Consider SMS with virtual stop
 - $A \times \epsilon \sim 2-10\%$ improving with larger mass splitting
 - Best expected limit from ≥ 3 b selection
- Exclude gluino mass up to ~ 850 GeV for m(χ^0) ~ 200 GeV

Same sign dilepton + b search

- Same-sign lepton pairs are classic SUSY searches
 - Leptons from many SUSY decay chains: chargino, neutralino, W, Z, sleptons...
 - Low SM backgrounds
- Adding b jets helps even more
 - Lower backgrounds
 - t→bW can give even more leptons
- Selection
 - $\square \ge 2$ b-tagged jets with $p_T > 40$ GeV
 - $lue{}$ Isolated same sign e or μ pair $p_{\scriptscriptstyle T} > 20~{
 m GeV}$
 - M(II) > 8 GeV to reject b's
 - Reject additional leptons consistent with Z's
 - MET > 30 GeV
 - Low cut possible with dilepton triggers

Up to 4 leptons + 2 b jets

l[±]l[±] + b: fake lepton backgrounds

- From b,c decays, unidentified γ
 conversions, decay-in-flight muons, or
 punch through
- Use fake-dominated control sample in data of lepton candidate back-toback with well reconstructed jet
- Loosen lepton selection and isolation requirements to measure tight/loose ratio in control sample
- Use loosened lepton selection in signal region and scale by tight/loose ratio
- $\hfill\Box$ Tight/loose ratio applied as function of lepton type, $p_{\scriptscriptstyle T}$ and η

l[±]l[±] + b: SM and q-flip backgrounds

- Rare SM events with SS dileptons
 - Biggest contributions are ttW, ttZ; less from di- and tri-boson events
 - Estimated from MC
 - Will measure these SM rates when statistics allow
- Incorrect charge assignment
 - Take wrong-charge probabilities from MC
 - Negligible for muons ($\sim 10^{-5}$)
 - Important for electrons ($\sim 10^{-3}$)
 - Hard brem and conversion
 - Worst where most tracker material
 - Confirmed in data by rate of "e[±]e[±]" events peaking at Z mass
 - Background measured by counting opposite-sign events with signal selection and weighting by wrong-charge fraction

$l^{\pm}l^{\pm}$ + b: results

- 7 search regions defined with additional cuts applied
- Very low background search: 7 total events (2 ee, 2 μμ, 3 eμ)
- Good agreement between measured backgrounds and data events; no excess observed

	SR1	SR2	SR3	SR4	SR5	SR6	SR7
No. of jets	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3
No. of btags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3
Lepton charges	++/	++	++/	++/	++/	++/	++/
$ \not\!\!E_{ m T}$	\geq 30 GeV	≥ 30 GeV	≥ 120 GeV	$\geq 50\mathrm{GeV}$	\geq 50 GeV	$\geq 120~{ m GeV}$	≥ 50 GeV
$H_{ m T}$	$\geq 80~{ m GeV}$	$\geq 80~{ m GeV}$	≥ 200 GeV	$\geq 200GeV$	\geq 320 GeV	\geq 320 GeV	≥ 200 GeV
q-flip BG	1.1 ± 0.2	0.5 ± 0.1	0.05 ± 0.01	0.3 ± 0.1	0.12 ± 0.03	0.026 ± 0.009	0.008 ± 0.004
Fake BG	3.4 ± 2.0	1.8 ± 1.2	0.32 ± 0.50	1.5 ± 1.1	0.81 ± 0.78	0.15 ± 0.45	0.15 ± 0.45
Rare SM BG	3.2 ± 1.6	2.1 ± 1.1	0.56 ± 0.28	2.0 ± 1.0	1.04 ± 0.52	0.39 ± 0.20	0.11 ± 0.06
Total BG	7.7 ± 2.6	4.4 ± 1.6	0.9 ± 0.6	3.7 ± 1.5	2.0 ± 0.9	0.6 ± 0.5	0.3 ± 0.5
Event yield	7	5	2	5	2	0	0

$l^{\pm}l^{\pm}$ + b: stop production limits

- Use signal region with best expected
 UL for each point to extract limits
 - Tightest kinematics (SR6) best most places; essentially background free
 - Looser kinematics (SR4,5) best near thresholds with low $p_T(\chi^0)$
- Exclude gluino masses below ~800
 GeV in these models

Improves over single lepton limits near diagonal due to low MET cut

$l^{\pm}l^{\pm}$ + b: sbottom production limits

- Direct and gluino-mediated sbottom production models with SS dileptons
 - Loosest kinematic cuts (SR1,4) are best for sbottom pair production
 - Limit mostly insensitive to χ^0 mass within allowed region
 - Very sensitive to low MET signals
 - Tighter HT cuts (SR5,6) better for gluino pair production with longer SUSY decay chain with more jets
 - Exclude gluino masses below ~800 GeV

5/4/12

Keith Ulmer -- University of Colorado

- Also update same-sign dilepton search without the b tag requirement to full 2011 dataset
 - Add low p_T lepton selection with $p_T \mu(e) > 5(10)$ GeV
 - \blacksquare Add hadronic τ channel with $\tau\tau$, $e\tau$ or $\mu\tau$
- No signal observed; set limits in CMSSM

Information for model testing

- Best results only possible with full detector simulation as in previous slides
- However, many more models exist than those explicitly tested
- Results made more generally useful by providing efficiency curves for all objects as functions of generator level (hard scatter parton) kinematics
- In CMSSM no b tag result, a comparison results in limits that are within 15% of the fully simulated result

In the pipeline

- □ Updates for everything with 5 fb⁻¹ and beyond. 2012 data rolling in as we speak...
- Hadronic searches with other alternative kinematic variables also adding b jets
 - $\square \alpha_{\mathsf{T}}$, Razor
- Direct stop pair production searches
- Hadronic sbottom pair production searches

Thoughts about where to go next

- Targeted direct stop/sbottom pair production searches
 - Focus on possible signatures with split spectra—only a limited number but can be hard to get at if low MET, or too tt-like
- Continue to build better inclusive searches
 - More sophisticated use of kinematic information
 - Alternative and complimentary variables like α_{T} , RAZOR, M_{T2} , ...
 - Squeezing all possible power with multivariate and shape-based approaches
 - Alternative and complimentary background measurements in data
 - To claim a discovery there is no substitute for data-based background measurements
 - Complementary methods to measure the same background builds confidence
 - Statistical power of multiple methods together can really pin down SM backgrounds; even regions with relatively large backgrounds could improve sensitivity
- Probing difficult phase space
 - Compressed spectra with low MET signals may require more careful triggers, relying on non-MET variables: lots of leptons, jets, b jets, photons, taus...
- Keep an open mind to look everywhere we can

Conclusions

 Lots of new CMS searches with bottom jets, but still no signs of SUSY

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

- Still lots of (natural) parameter space left to explore
- We're going to have to dig in and attack more difficult regions, but we have the machine and detectors to do it

Extra slides

CMS Detector

: 15.0 m

: 28.7 m

: 3.8 T

SILICON TRACKER

Pixels (100 x 150 μm²) ~1m² ~66M channels

Microstrips (80-180µm)

~200m2 ~9.6M channels

5/4/12

Overall diameter

Overall length Magnetic field

Keith Ulmer -- University of Colorado

~7k channels

250 Drift Tube & 480 Resistive Plate Chambers

Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

B tagging performance

Jets+MET+b: QCD background

- Standard azimuthal separation between jets and MET is very correlated with MET
- We normalized the variable by it's resolution to remove the correlation
 - Assumes MET comes from one mismeasured | p_T(jet) |
- Since uncorrelated can apply standard ABCD method to estimate the background in the signal region

$$N_{pass}^{HighMET} = (N_{pass}^{LowMET} / N_{fail}^{LowMET}) * N_{fail}^{HighMET}$$

MT2 definition

- \square Keep m $_\chi$ as free parameter in general M_{T2} , set to zero in CMS searches

$$(m_T^{(i)})^2 = (m^{vis(i)})^2 + m_\chi^2 + 2\left(E_T^{vis(i)}E_T^{\chi(i)} - \vec{p}_T^{vis(i)} \cdot \vec{p}_T^{\chi(i)}\right)$$

$$M_{T2}(m_{\chi}) = \min_{p_{T}^{\chi(1)} + p_{T}^{\chi(2)} = p_{T}^{miss}} \left[\max \left(m_{T}^{(1)}, m_{T}^{(2)} \right) \right]$$

Single lepton + b: CMSSM limits

CMSSM limits from single lepton + b search

l[±]l[±] + b: limits on non-SUSY models

- \Box Use I^+I^+ pairs only to place limits on two models with same sign decays from the
 - Z' model with chiral couplings to uu and tt proposed to explain Tevatron top f-b asymmetry $\mathcal{L} = \tfrac{1}{2} g_W f_R \bar{u} \gamma^\mu (1+\gamma^5) t Z'_u + \text{h.c.}$
 - Maximally flavor violating model with new SU(2) scalar doublet that couples to 1st and 3rd generation quarks via $\mathcal{L} = \xi \Phi q_1 q_3$.

